Importance of Radioactive Labelling to Elucidate Inositol Polyphosphate Signalling

Miranda S.C. Wilson and Adolfo Saiardi.


Inositol polyphosphates, in their water-soluble or lipid-bound forms, represent a large and multifaceted family of signalling molecules. Some inositol polyphosphates are well recognised as defining important signal transduction pathways, as in the case of the calcium release factor Ins(1,4,5)P3, generated by receptor activation-induced hydrolysis of the lipid PtdIns(4,5)P2 by phospholipase C. The birth of inositol polyphosphate research would not have occurred without the use of radioactive phosphate tracers that enabled the discovery of the “PI response”. Radioactive labels, mainly of phosphorus but also carbon and hydrogen (tritium), have been instrumental in the development of this research field and the establishment of the inositol polyphosphates as one of the most important networks of regulatory molecules present in eukaryotic cells. Advancements in microscopy and mass spectrometry and the development of colorimetric assays have facilitated inositol polyphosphate research, but have not eliminated the need for radioactive experimental approaches. In fact, such experiments have become easier with the cloning of the inositol polyphosphate kinases, enabling the systematic labelling of specific positions of the inositol ring with radioactive phosphate. This approach has been valuable for elucidating their metabolic pathways and identifying specific and novel functions for inositol polyphosphates. For example, the synthesis of radiolabelled inositol pyrophosphates has allowed the discovery of a new protein post-translational modification. Therefore, radioactive tracers have played and will continue to play an important role in dissecting the many complex aspects of inositol polyphosphate physiology. In this review we aim to highlight the historical importance of radioactivity in inositol polyphosphate research, as well as its modern usage.

Eukaryotic Phosphate Homeostasis: The Inositol Pyrophosphate Perspective


Phosphate, as a cellular energy currency, essentially drives most biochemical reactions defining living organisms, and thus its homeostasis must be tightly regulated. Investigation into the role of inositol pyrophosphates (PP-IPs) has provided a novel perspective on the regulation of phosphate homeostasis. Recent data suggest that metabolic and signaling interplay between PP-IPs, ATP, and inorganic polyphosphate (polyP) influences and is influenced by cellular phosphate homeostasis. Different studies have demonstrated that the SPX protein domain is a key component of proteins involved in phosphate metabolism. How PP-IPs control some aspects of phosphate homeostasis has become clearer with the recently acquired crystal structures of SPX domains. We review here recent studies on eukaryote phosphate homeostasis and provide insights into future research.

Protein pyrophosphorylation: moving forward.

Protein pyrophosphorylation: moving forward lipitor generic.

Comment on: Inositol hexakisphosphate kinase 1 (IP6K1) activity is required for cytoplasmic dynein-driven transport

f1-largeGenetic ablation of inositol pyrophosphate synthesis has established the fundamental importance of this class of molecules to the eukaryote cell. These studies, however, must be complemented by cell biology and biochemical approaches to appreciate the signalling involved in the processes regulated by inositol pyrophosphates. A recent study by Chanduri et al. published in the Biochemical Journal, by integrating multiple experimental approaches, demonstrated that inositol pyrophosphates regulate intracellular vesicular movement. In particular, the vesicular transport along the microtubule that is driven by the motor protein complex dynein. Importantly, one subunit of this cellular motor, dynein 1 intermediate chain 2, undergoes serine pyrophosphorylation, a post-translational modification driven by inositol pyrophosphates. The pyrophosphorylation status of this dynein intermediate chain regulates its interaction with dynactin, which recruits the motor to vesicles. This mechanistically might explain how inositol pyrophosphates control intracellular membrane trafficking. By dissecting the serine pyrophosphorylation process, this work increases our awareness of this modification, underappreciated by the scientific literature but probably not by the eukaryotic cell.

Inositol Pyrophosphate Profiling of Two HCT116 Cell Lines Uncovers Variation in InsP8 Levels

Inositol Pyrophosphate Profiling of Two HCT116 Cell Lines Uncovers Variation in InsP8 Levels


Collaborative work with the lab of S. Shears.

The HCT116 cell line, which has a pseudo-diploid karotype, is a popular model in the fields of cancer cell biology, intestinal immunity, and inflammation. In the current study, we describe two batches of diverged HCT116 cells, which we designate as HCT116NIH and HCT116UCL. Using both gel electrophoresis and HPLC, we show that HCT116UCL cells contain 6-fold higher levels of InsP8 than HCT116NIH cells. This observation is significant because InsP8 is one of a group of molecules collectively known as ‘inositol pyrophosphates’ (PP-InsPs)-highly ‘energetic’ and conserved regulators of cellular and organismal metabolism. Variability in the cellular levels of InsP8 within divergent HCT116 cell lines could have impacted the phenotypic data obtained in previous studies. This difference in InsP8 levels is more remarkable for being specific; levels of other inositol phosphates, and notably InsP6 and 5-InsP7, are very similar in both HCT116NIH and HCT116UCL lines. We also developed a new HPLC procedure to record 1-InsP7 levels directly (for the first time in any mammalian cell line); 1-InsP7 comprised <2% of total InsP7 in HCT116NIH and HCT116UCL lines. The elevated levels of InsP8 in the HCT116UCL lines were not due to an increase in expression of the PP-InsP kinases (IP6Ks and PPIP5Ks), nor to a decrease in the capacity to dephosphorylate InsP8 you could look here. We discuss how the divergent PP-InsP profiles of the newly-designated HCT116NIH and HCT116UCL lines should be considered an important research opportunity: future studies using these two lines may uncover new features that regulate InsP8 turnover, and may also yield new directions for studying InsP8 function.

Contribution of polymorphic variation of inositol hexakisphosphate kinase 3 (IP6K3) gene promoter to the susceptibility to late onset Alzheimer’s disease

Contribution of polymorphic variation of inositol hexakisphosphate kinase 3 (IP6K3) gene promoter to the susceptibility to late onset Alzheimer’s disease

Maintenance of electric potential and synaptic transmission are energetically demanding tasks that neuronal metabolism must continually satisfy lipitor dosage. Inability to fulfil these energy requirements leads to the development of neurodegenerative disorders, including Alzheimer’s disease. A prominent feature of Alzheimer’s disease is in fact neuronal glucose hypometabolism. Thus understanding the fine control of energetic metabolism might help to understand neurodegenerative disorders. Recent research has indicated that a novel class of signalling molecules, the inositol pyrophosphates, act as energy sensors. They are able to alter the balance between mitochondrial oxidative phosphorylation and glycolytic flux, ultimately affecting the cellular level of ATP. The neuronal inositol pyrophosphate synthesis relies on the activity of the neuron enriched inositol hexakisphosphate kinase 3 (IP6K3) enzyme. To verify an involvement of inositol pyrophosphate signalling in neurodegenerative disorders, we performed tagging single nucleotide polymorphism (SNP) analysis of the IP6K3 gene in patients with familial and sporadic late onset Alzheimer’s disease (LOAD). Two SNPs in the 5′-flanking promoter region of the IP6K3 gene were found to be associated with sporadic LOAD. Characterizing the functionality of the two polymorphisms by luciferase assay revealed that one of them (rs28607030) affects IP6K3 promoter activity, with the G allele showing an increased activity. As the same allele has a beneficial effect on disease risk, this may be related to upregulation of IP6K3 expression, with a consequent increase in inositol pyrophosphate synthesis. In conclusion, we provide the first evidence for a contribution of genetic variability in the IP6K3 gene to LOAD pathogenesis.